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What should the policeman do?



Aristotelian logic only deals with absolute certainty; we aim to extend it to plausible reasoning

Two strong syllogisms:

● If A is true, then B is true; A is true, therefore B is true
● If A is true, then B is true; B is false, therefore A is false
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We aim to design a “thinking robot”

We want do design a robot that reasons (that is, deals quantitatively with plausibility) 
according to definite rules

Our robot reasons about propositions {A, B, …} that are either true or false and have 
unambiguous meaning

These propositions obey the rules of usual symbolic login (Boolean algebra):

● AB := A and B are both true
● A+B := at least A or B are true
● A := A is false

● Commutativity AB = BA; A+B = B+A
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● Duality If C = AB, then C = A+B; If D = A+B, then D = A B
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Basic desiderata for our thinking robot

I. Degrees of plausibility are represented by real numbers

The plausibility that the robot assigns to some proposition A will, in 
general, depend on whether we told the robot that some other proposition 
B is true. Therefore, we represent this plausibility as:

A|B

This stands for a real number, and so do other symbols:

A|BC is the plausibility that A is true given that B and C are true

A+B|C is the plausibility that A or B are true given that C is true



Basic desiderata for our thinking robot

II. Qualitative correspondence with common sense

If our robot has old information C which get updated to C' in such a way 
that the plausibility of A increases:

A|C' > A|C

but the plausibility of B given A doesn't change:

B|AC' = B|AC

then, it must be true that:

A|C' < A|C

AB|C' ≥ AB|C



Basic desiderata for our thinking robot

II. Qualitative correspondence with common sense

If our robot has old information C which get updated to C' in such a way 
that the plausibility of A increases:

A|C' > A|C

but the plausibility of B given A doesn't change:

B|AC' = B|AC

then, it must be true that:

A|C' < A|C

AB|C' ≥ AB|C



Basic desiderata for our thinking robot

III. Consistency

IIIa. If a conclusion can be reasoned out in more than one way, then 
every possible way must lead to the same result

IIIb. The robot always takes into account all of the evidence it has 
relevant to a question

IIIc. The robot always represents equivalent states of knowledge by 
equivalent plausibility assignments



Cox’s Theorem
These conditions uniquely determine the rules by which our robot 
must reason

I. Degrees of plausibility are represented by real numbers
II. Qualitative correspondence with common sense

III. Consistency



Cox’s Theorem
The product rule

We seek to relate AB|C to the plausibilities A|C and B|C separately

Using (I) + (II) + (IIIa) one can prove that there is an increasing monotonic 
function w of the plausibility that verifies

● w(AB|C) = w(A|BC) w(B|C) = w(B|AC) w(A|C)
● Certainty of A|C corresponds to w(A|C) = 1
● Certainty of A|C corresponds to w(A|C) = 0
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Cox’s Theorem
The sum rule

We start by noting that, since A + A is always true, the plausibility of A must 
depend on the plausibility of A:

w(A|B) = S[w(A|B)]

Product rule together with (IIIa) then imply that:

wm(A|B) + wm(A|B) = 1 with arbitrary positive m
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Cox’s Theorem
Putting it all together

From our basic desiderata, we have been able to conclude that there must be a 
positive monotonic increasing function of the plausibility that verifies:

1. w(AB|C) = w(A|BC) w(B|C) = w(B|AC) w(A|C)
2. wm(A|B) + wm(A|B) = 1 with arbitrary positive m
3. Certainty of A|C corresponds to w(A|C) = 1
4. Certainty of A|C corresponds to w(A|C) = 0



Cox’s Theorem
Putting it all together

We can now define p(x) := wm(x) and our rules take the form:

1. p(AB|C) = p(A|BC) p(B|C) = p(B|AC) p(A|C)
2. p(A|B) + p(A|B) = 1
3. Certainty of A|C corresponds to p(A|C) = 1
4. Certainty of A|C corresponds to p(A|C) = 0



We still don't know what actual numerical 
values of plausibility should be assigned at 
the beginning of the problem so that the 
robot can get started!
We can solve this problem by invoking (IIIb) and (IIIc) (which we haven't used, yet!)



Numerical values

Consider p(A1+A2+...+AN|B), where Ai are mutually exclusive and exhaustive (that is, one and only one 
of them must be true)

B does not favor any of the propositions Ai

Applying the rules we have so far one can prove that

Now, using (IIIb) (the robot always takes into account all of the evidence) and (IIIc) (the robot always 
represents equivalent states of knowledge by equivalent plausibility assignments), one can prove that 

and we have arrived at definite numerical values!!
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Cox’s Theorem leads to the quantitative and precise definition of probability

We can now define p(x) := wm(x) and our rules take the form:

1. p(AB|C) = p(A|BC) p(B|C) = p(B|AC) p(A|C)
2. p(A|B) + p(A|B) = 1
3. Certainty of A|C corresponds to p(A|C) = 1
4. Certainty of A|C corresponds to p(A|C) = 0

Information given to the robot (we've seen one case but it can be generalized) 
determines completely the values of the quantities p(A|B) and allows the robot 
to start

Since p is fixed by the data (not A|B) we can just turns thing around and:

● say that A|B is a monotonic function of p (instead of the opposite)
● call p probability and make it the object of our study
● let the plausibility A|B fade



So what is 
probability?

Probability is a representation 
of the plausibility of a 
proposition in the “mind” of our 
robot

Note that we have made no reference 
whatsoever to frequencies

Probability theory (as we know it) is 
therefore the extended logic we were 
looking for

…and what it is not?
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Probability theory and Bayesian model selection:  A simple example with coins 

You know I have two coins: 

             Coin A                                   Coin B 

I select one of the coins without letting you know whether it is A or B 

I toss the coin and get tails 

What is the probability that the coin I selected is B? 



Probability theory and Bayesian model selection:  A not so simple example with coins 

You know I have two coins: 

             Coin A                                   Coin B 

I select one of the coins without letting you know whether it is A or B 

I toss the coin and get heads

What is the probability that the coin I selected is B? 



Probability theory and Bayesian model selection:  Yet another example with coins 

You know I have two coins: 

             Coin A                                       Coin B Coin C 

I select one of the coins without letting you know whether it is A, B , or C

I toss the coin and get heads

What is the probability that the coin I selected is B? 



Intuition from the 
examples with coins

“Final” probability of the model is 
proportional to the probability of 
generating the observed data with 
the model

“Final” probability of the model is 
also proportional to the probability 
of the model a priori, that is, before 
seeing any data



This is a consequence of the application of Bayes theorem to model selection

Suppose we have some data D and we want to say something about a model 
M. What is the plausibility of model M?
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This is a consequence of the application of Bayes theorem to model selection

Suppose we have some data D and we want to say something about a model 
M. What is the plausibility of model M?

posterior likelihood prior

evidence



Typically, our models have parameters 𝜃, and our model selection approach needs to take this 
fact into consideration

Without parameters:

With parameters:



Typically, our models have parameters 𝜃, and our model selection approach needs to take this 
fact into consideration
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integrated likelihood



Information theoretic interpretation
The most plausible model given the data has the shortest description length

The posterior can always be written as:
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But why do we call -log p(M, D) the description length?



Information theoretic interpretation
The most plausible model given the data has the shortest description length

The posterior can always be written as:

with the description length:



Statistical physics interpretation
The most plausible model given the data is the ground state

The posterior can always be written as:

with the energy:



So far…

Bayesian model selection:

● Probabilistic interpretation - Most plausible model given the data
● Information theoretic interpretation - Shortest (or, equivalently, most 

compressive) description of the data
● Statistical physics interpretation - Ground state of a system whose “states” 

are the models

For models with parameters, we must integrate them and use the integrated 
likelihood instead of the “regular” likelihood



Arguments for a probabilistic approach

Cox-type argument: Any alternative way to assign plausibilities to models must 
violate some of the very basic conditions in the desiderata

Dutch book-type argument: Betting on models using any alternative 
assignment of plausibility results in sets of bets that one would be willing to 
accept but that result in certain loss

Consistency argument: Any alternative that does not coincide with the 
probabilistic approach in the large N limit will not select the true generating 
model in this limit

Information theory argument: Any alternative way of selecting models will lead 
to models that compress the data less
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Probability theory and Bayesian inference: last example with coins

Imagine that we toss a coin 5 times and get D := {H,H,T,H,T}

So, what is the probability that the next toss gives H?

Bernoulli process At each toss, independently of previous ones, probability of 
getting H is h. The model is fully specified by h (therefore, M := h)

Then, the probability of getting {H,H,T,H,T} is

If, a priori, we don't know anything about the right value of h, we can assume that the 
prior is uniform

Then, we finally have that
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Probability theory and Bayesian inference: last example with coins



Within the Bayesian approach, we can and should consider all evidence at hand



So, what is the probability that the next toss gives H?



In general, carrying out integrals like this one is not straightforward

In the previous example, we were interested in calculating some property using our 
complete probabilistic description of the parameter of the model (the posterior)

This is, in fact, a very common situation

Unfortunately, unlike in the coin example, more often than not these integrals cannot 
be calculated exactly
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In general, carrying out integrals like this one is not straightforward

When this integral cannot be computed analytically or numerically, we can use 
the approximation 

where the sum is over N models sampled from the posterior distribution 
p(M|D), which we do by means of Markov Chain Monte Carlo (MCMC).



In general, carrying out integrals like this one is not straightforward

When this integral cannot be computed analytically or numerically, we can use 
the approximation 

where the sum is over N models sampled from the posterior distribution 
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MCMC: Gibbs sampler

Suppose that my model M can be characterized by some “parameters”

The Gibbs sampler is an iterative process in which parameters are selected one by 
one and updated according to

Unfortunately, this only works if this conditional probability can be calculated



MCMC: Metropolis-Hastings sampler

Suppose that my model M can be characterized by some “parameters”

The MH sampler is an iterative process that proceeds as follows:

● Generate a new configuration from some proposal generation distribution

● Compute

● Accept the new configuration with probability 
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MCMC: Metropolis-Hastings sampler

Suppose that my model M can be characterized by some “parameters”

The MH sampler is an iterative process that proceeds as follows:

● Generate a new configuration from some proposal generation distribution

● Compute

● Accept the new configuration with probability 



MCMC samples from the posterior

In general, MCMC gives us a sample from the posterior p(M|D), that is, a 
collection of models rather than a single best model

The ensemble allows us to do model averaging or choosing particularly 
relevant models, depending on the question we need to address
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Group structure in complex networks



We aim to divide a network—typically 
one that is large—into smaller groups 
of nodes that are similarly connected 
to others

With such a division, we can better 
summarize the large-scale structure of 
the network by describing how these 
groups are connected, instead of each 
individual node

Community 
detection

Peixoto, Descriptive vs. Inferential Community Detection in Networks (2023)

https://www.cambridge.org/core/elements/descriptive-vs-inferential-community-detection-in-networks/7A5360B356DDC65A89662688C3602CBF


Each partition M=b of the nodes into 
groups amounts to a different model 
of our data, that is, our observed 
network D=Ao

with:

Community 
detection as model 
selection

Peixoto, Descriptive vs. Inferential Community Detection in Networks (2023)

https://www.cambridge.org/core/elements/descriptive-vs-inferential-community-detection-in-networks/7A5360B356DDC65A89662688C3602CBF
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network D=Ao

with:

Community 
detection as model 
selection
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Harrison White
March 21, 1930 – May 18, 2024

 



The stochastic block model
We assume that nodes belong to groups, and their interactions depend only 
on those groups 

 

White, Boorman, Breiger, AJS (1976) ; Holland, Laskey, Leinhardt, Soc. Networks (1983) ; Nowicki, Snijders, JASA (2001) 
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Each partition M=b of the nodes into 
groups amounts to a different model 
of our data, that is, our observed 
network D=Ao

with:

Community 
detection as model 
selection



Guimera, Sales-Pardo, Proc. Natl. Acad. Sci. USA (2009) 



Guimera, Sales-Pardo, Proc. Natl. Acad. Sci. USA (2009) 



Inferential approaches are preferable to “descriptive” approaches such as modularity 
maximization

Peixoto, Descriptive vs. Inferential Community Detection in Networks (2023)

Minimum description lengthModularity maximization

https://www.cambridge.org/core/elements/descriptive-vs-inferential-community-detection-in-networks/7A5360B356DDC65A89662688C3602CBF


Inferential approaches are preferable to “descriptive” approaches such as modularity 
maximization

Modularity maximization Minimum description length

Peixoto, Descriptive vs. Inferential Community Detection in Networks (2023)

https://www.cambridge.org/core/elements/descriptive-vs-inferential-community-detection-in-networks/7A5360B356DDC65A89662688C3602CBF
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Can we find models that predict human mobility flows?

Gravity models “Deep gravity” 
models

Cabanas et al., submitted (2024) 



y=f(x,θ)
Can we design a “machine scientist” that automates the task of building 

closed-form mathematical models from data?



y=f(x,θ)
Can we design a “machine scientist” that automates the task of building 

closed-form mathematical models from data?



Kouzou Sakai / Quanta Magazine



p(f | {x, y})
This posterior over expressions/models encapsulates the full probabilistic 

solution to the symbolic regression problem

y=f(x,θ)



The most plausible model has the shortest description length (compresses the data optimally)

The posterior can be rewritten as

 



The most plausible model has the shortest description length (compresses the data optimally)

The posterior can be rewritten as

And the description length can be approximated as

BIC
prior



Exploring the space of models
A Metropolis-Hastings algorithm for sampling 
mathematical expressions

Guimera et al., Science Advances (2020)



All in all, we have defined our Bayesian machine 
scientist

It establishes the plausibility of any model by 
means of the posterior (i.e. description length)

It explores the space of models and samples 
models from their posterior using 
Metropolis-Hastings



So, does it work?

We generate synthetic data 
and see if the machine 
scientist is able to recover 
the correct model

Guimera et al., Science Advances (2020)

https://docs.google.com/file/d/1wtTBgfa_nhVvSnSYiWsc3qIJA1QVwOdn/preview


Can we find models that predict human mobility flows?

Gravity models “Deep gravity” 
models

Cabanas et al., submitted (2024) 



Can we find models that predict human mobility flows?

Cabanas et al., submitted (2024) 



Wrapping up with a bit of wisdom

E. T. Jaynes (1985)



Thank you

More information:

http://seeslab.info

@sees_lab

http://seeslab.info


Inferential approaches are not limited 
to the vanilla stochastic block model 

There are many variations, and also 
non-group-based models, amenable 
to inferential/probabilistic treatment



Hierarchical priors 
(nested stochastic 
block model)

Not all partitions are equally plausible 
a priori

Peixoto, Phys Rev X (2014) 



The degree-corrected stochastic block model
We assume that nodes belong to groups, and their interactions depend only 
on those groups  and each node’s overall propensity to make connections

 

Karrer, Newman, Phys Rev E (2011)



Stochastic block models for multilayer and temporal networks

Vallès-Català et al., Phys Rev X (2016)
Peixoto, Rosvall, Nat Comm (2017)

Tarrés-Deulofeu et al., Phys Rev E (2019) Image credit: muxViz



The mixed-membership stochastic block model
Nodes do not belong to a single group, but rather to a mixture of groups

Each node i belongs to group r with probability        such that

Then, nodes i and j are connected with probability

Airoldi et al., J  Mach Learn Res (2008)
Godoy-Lorite, et al., Proc Natl Acad Sci USA (2016)



Mixed-membership stochastic block model for higher-order interactions

Sales-Pardo, et al., Proc Natl Acad Sci USA (2023)



Mixed-membership stochastic block model with node metadata

Fajardo-Fontiveros, et al., Phys Rev X (2022)



Generative models for non-group mechanisms (for example, triadic closure)

Peixoto, Phys Rev X (2022)


